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Uniform Enclosure of High Order for 
Boundary Value Problems by Monotone Discretization* 

By Ch. GrofSmann and H.-G. Roos 

Abstract. In the investigation of boundary value problems the construction of a two- 
sided inclusion of the solution can be as important as a numerical approximation of the 
solution itself. In the present paper we analyze a monotone discretization technique of 
higher order based upon piecewise interpolation and shifting such that bounding upper 
and lower solutions are obtained. The monotone discretization under consideration takes 
advantage of the property of the operator to be of monotone kind. 

1. Introduction. In the investigation of boundary value problems the con- 
struction of a two-sided inclusion of the solution can be as important as a numerical 
approximation of the solution itself. In the present paper we analyze a monotone 
discretization technique of higher order based upon piecewise interpolation and 
shifting such that bounding upper and lower solutions are obtained. Therefore 
no a priori information is needed. The principle of monotone discretization and a 
detailed investigation of the first-order technique can be found in [61. 

The monotone discretization under consideration takes advantage of the property 
of the operator to be of monotone kind. This property is guaranteed by weak max- 
imum principles. Using these principles, discretization techniques which produce 
enclosing lower and upper solutions are discussed in [1], [21, [41, [91, [10]. However, 
the approaches used in these papers are different from that adopted here, in that 
the enclosure is constructed by means of correction terms, or using semi-infinite 
programming techniques, or adapting free parameters in specific representations of 
the discrete solution. 

For monotone iteration schemes in discrete systems, see for example [11]. A 
combination of monotone discretization with monotone iteration techniques is given 
in [5]. 

2. The Basic Principle of Monotone Discretization to Generate Uni- 
form Enclosures. Throughout this paper we deal with the following type of 
weakly nonlinear two-point boundary value problems: 

- u"(x) + g(x, u(x)) = 0 in Q := (a, b), 
(2.1) u(a) = u(b) = 0. 

Here, Q c R denotes a given interval and g: Q x R -- R denotes some continuous 
differentiable function satisfying 

(2.2) g(x,t) < g(x,s) Vx E Q, t < s. 
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Under these conditions, problem (2.1) possesses a unique solution. Furthermore, 
property (2.2) guarantees the following monotonicity principle to hold (see, e.g., 

[9]). 

LEMMA 2. 1. Let u, v E C1(Ql) be piecewise twice continuously differentiable. 
Then 

-u"(x) + g(x, u(x)) < -v"(x) + g(x, v(x)) a.e. in Q1, 
u(a) < v(a), u(b) < v(b) 

implies u(x) < v(x) Vx E Q. 

The method of monotone discretization (see [5], [6]) rests on two facts: 
(i) First, the nonlinear function g(x, u(x)) is replaced by a piecewise defined 

simple function such that the modified problem has a known analytic solution. 
(ii) Second, the function replacing the nonlinearity in (2.1) is chosen to under- 

estimate or to overestimate the original one. 
We remark that the first principle is used to obtain a finite-dimensional repre- 

sentation, i.e., a discretization. The second principle, in combination with Lemma 
2.1, guarantees the enclosing property of the generated discrete solution. 

Let some grid Z(Q) {xi: i = 0(1)N} be given on the interval Q2, i.e., 

a =:xo < x1 < < XN-1 < XN := b. 

The corresponding step sizes and subintervals we denote by 

hi : -= xi-xi- and Qi := (xi_I, xi), i = 1(1)N. 

We introduce the space Ch(Ql) of piecewise continuous functions on Q2 with discon- 
tinuities only at the grid points {xi}, i.e., 

Ch(Q) := {v E L2(0): vj-i E C(ii), i = 1(1)N} 

equipped with the norm 

jljlvjj := max || liv I C(fi)'= )ess sup Iv(x)l. 

Let G: C(Q) -* C(fQ) denote the Nemyckij operator related to the function g(.,), 
i.e., 

[Gv] (x) := g(x, v (x)) Vx E Q 
Definition 2.1. Operators Gh, Gh: C(fQ) -- Ch(?!) are called bounding operators 

for G, if the inequalities 

(2.3) GhV > Gv > GhV for all v E C(Q) 

hold. 
Here in (2.3), as well as later on, the semiordering is defined naturally, i.e., the 

inequality holds for almost all arguments x E Q2. The index h used for the bounding 
operators characterizes the mesh size of the discretization grid, h = max1<i<N hi. 

In order to separate the investigations of the bounding property and the prop- 
erties influenced by the nonlinearity g, we suppose the bounding operators to be 
constructed via continuous mappings 

(2.4) Ph, Ph: C(Q) Ch(Q), 
PhW > W > PhW for all w E C(Q) 
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by 

(2.5) Gh :=PhG and Gh := PhG. 

Obviously, operators defined by (2.4) and (2.5) are bounding operators, i.e., they 
satisfy (2.3) because of property (2.2). 

In [61 we studied a first-order method choosing 

[PhWI (X) max w(), [PhW](x) := min w() Vx E Qi. 

Now, we replace the nonlinear function g(x, u(x)) by a piecewise polynomial of 
degree k to generate a kth order method (k > 1). Let us define 

Pk := {v E L2(Q): vlo, a polynomial of degree < k}. 

We use an equidistant auxiliary grid on every subinterval Qi given by 

xiji + khi, j = 0(1)k, 

and define a piecewise interpolation operator Sk: C(Ql) -+ Pk by SkulnI := in- 
terpolation polynomial of u with knots aj, j = 0(1)k. Further, we introduce the 
operators p, p: C(Ql) - Po by 

(2.6) [pw](x) :=maxw(,), [pwl(x) := min w(() Vx E Qi 
CE-Oi (en, 

and define 

(2.7) Ph :=Sk + (I-Sk), 

(2.8) Lh Sk +p(I - Sk) 

(I is the identity). 
In the following we analyze the case Ph := Ph and set p := p too. The operator 

Ph is defined according to (2.6)-(2.8) by piecewise polynomial interpolation and 
shifting of the interpolation polynomial such that it forms an upper (in the case 
Ph a lower) bound to the original function; see Figure 1 for k = 2. 

Phu 

FIGURE21 

FIGURE 1 
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Replacing the continuous function g(, u(.)) by a piecewise continuous one, an 
adequate tool for handling the modified problem is a corresponding weak formula- 
tion. We introduce the notation U := Ho (Q) and let U* be the related dual space. 
The bounding operators Gh, Gh can be considered as mappings from U into U*. 
Thus our approximate problems corresponding to (2.1) are: Find some Uh E U 
with 

(2.9) j uVv'dx + / (GhUh)V dx = 0 for all v E U. 

LEMMA 2.2. Let there exist solutions Uh,Uh of (2.9) with Gh := Gh, Gh 

Gh, respectively. Then the solution u of the original problem (2.1) is enclosed by 

Uh < U < Uh. 

Proof. By a known standard argument, the solution of our approximate problem 
(2.9) belongs to the space H2, thus Uh E C1 (a). Applying Lemma 2.1, the desired 
enclosing property follows from (2.3). 0 

In the next section we will prove our main result concerning the convergence 
rate of our enclosing discretization technique, described by (2.9) and the bounding 
operator defined by (2.5)-(2.8). 

THEOREM 2. 1. Assume that all partial derivatives of g of order less than or 
equal to k + 1 are continuous on (i x R, i = 1(1)N, and have a continuous 
extension on Ri x R. Then there exists a constant C independent of h such that 
the following estimation holds: 

max |u(x) -Uh (X) I < Chk+l. 
XEO! 

The discrete problem (2.9) is equivalent to a nonlinear system of a finite number 
of equations. 

In Section 4 we discuss the finite-dimensional implementation of our method for 
arbitrary k and propose a Newton-like iteration technique for solving the generated 
set of nonlinear equations. These questions are discussed in detail also in [5]. 

3. Error Estimation. In this section we prove our main result concerning the 
rate of convergence of our enclosing discretization technique, Theorem 2.1. 

Let the operators L, G: U -- U* be defined by 

(3.1) (Lu, v) := Ju'(x)v'(x) dx for any u, v E U 

and 

(3.2) (Gu, v) := g(X, u(x))v(x) dx for any u, v E U, 

respectively. Similarly, the bounding operator Gh can be interpreted. In (3.1), 
(3.2) and in the sequel, (.,.) denotes the dual pairing. Using the mappings L, G, 
the given boundary value problem (2.1) is equivalent to the operator equation 

(3.3) Lu + Gu = 0, 

and the discrete problem (2.9) can be written as 

(3.4) LUh + GhUh = 0. 
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LEMMA 3. 1. Let there exist a solution Uh of (3.4). Then the estimation 
1 

(3.5) ||u - uhil < -IGhuh - GUh II* 

holds. 

Proof. Let us denote by the norm in U and by 1 11* the norm in U*. 
Equation (3.4) is equivalent to 

(L(u - Uh), V) + (Gu - GUh, V) + (GUh - GhUh, V) = 0. 

Taking into account the monotonicity of g and the coerciveness of L, with v := U-Uh 

we obtain 

-IIu-Uh l h < IIGUh-Ghuh||*I|u-Uhl. 110 

It is rather technical to prove the solvability of the discrete problem. We showed 
this fact for sufficiently small h > 0 using the theory of pseudomonotone operators 
in [7]; another proof is based on an auxiliary variational inequality [5]. 

Lemma 3.1 shows that the error can be estimated using an estimation of some 
kind of the approximation error. We proceed by replacing the Ii * II*-norm on the 
right-hand side of (3.5) by the L?-norm: 

IIU - Uhll < I(I - Ph)GUhIIo. 

Next, we investigate 11(I - Ph)Guh IooIKj on every subinterval Pi. Using 

Ph = Sk +P(I-Sk) 

and the definition of p, we obtain 

||(I - Ph)GuhII o,Qj < 2II(I - Sk)GUhIIoo,Qji 

From approximation by polynomials the following estimation is known: 

jj(I - Sk)wIIcL(?) < Cl WjCj+j(?)h ,k+1 l 0 < l < k. 

Using the piecewise constancy of p, we obtain 

(3.6) ||(I - Ph)WIlcL(?j) < CIIWIICk+I(ni)h , 0 < 1 < k. 

It remains to show that 

(3.7) IIGUhIICk+l(Ti) < C, i = 1(1)N, 

for h -_ 0. 
First, we remark that Uh is bounded by some constant independent of the step 

size h. This fact has been shown in [7, Theorem 1.1]. The continuous embedding 

U -+ C(Q) and the continuity of g imply IIGhuhlIoo < C. With the smoothing 
property of L-1 we obtain from (3.4) the boundedness of Iuh IlH2(n); the continuous 

embedding H2(Q) _ C((Q) results in 

(3.8) IUh IIC1(Tn) < C 

On the other hand, Uh satisfies the differential equation 

-uh = (I - Ph) GUh- GUh 
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in every subinterval Qi. With the smoothness of g and (3.8) this leads recursively 
to 

IIUhjCIk+i(fjR) < C, i = 1(1)N, 

and finally this proves (3.7). There follows 

|U- Uhil < Chk+l. 

With the continuous embedding U -k C(Q) we obtain 

max lu(x)-Uh (x)I < Chk+1. 0j 
xEn 

4. Finite-Dimensional Implementation of the Method. In this section 
we first describe the nonlinear system of equations generated by the monotone 
discretization technique and then propose an iteration technique to solve this set 
of equations. 

The solution of our discrete problem 

LUh + GhUh = 0 

is piecewise polynomial of degree k + 2 and belongs to Cl ((Q). Thus, Uh can be 
represented in the following way: 

N-1 N k 

(4.1) Uh(X) = E uoio(x) + E E wij ij (X) 
i= 1 i=l j=O 

In this representation the pi denote the piecewise affine functions 

(X (- xi_)/hi if x E nil 
(pi(x) = (xi+, -x)lhi+l if x Ef2 i+ll 

0 otherwise, 

and the functions Vij are related to a basis {1ij}i=1(1)N,j=O(1)k in Pk according to 

(4.2) -?PI(X) = i (X), xi() = 0, 1 = 1(1)N. 

The basis {,ij} can be defined by 

( ( ) Tx(- xi-1)3 if x E fi, i= 1(1)NI 

g~t3\ = 0 otherwise, j = 0(1)k. 

From the differentiability of uh at the inner grid points xi we obtain 

Ui -Ui_l Ui+l -Ui 

hi hi+ 
(4.4) k 

- E(wi+i,j0i+i'j(xi + 0) - wjfoj(xi - 0)), i= 1(1)N - 1. 
j=0 

The validity of the differential equation 

-UII + GhUh= 0 

on every subinterval Qi results in 

N k 

(4.5) E iji + GhUh = 0. 

i=1 j=O 
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For arbitrary fixed k, the conditions (4.4), (4.5) form a system of nonlinear equa- 
tions that are equivalent to (2.9) (or (3.4)). 

To develop an iteration method for solving (4.4), (4.5), we linearize the equations 
(4.5) near the approximate solution ul5 on the subinterval (i by 

k 

Ewijij + GhuI + gu (xi-1, Ui ) (ui-1 -U 1) = 0, 

(4.6) j=O 

E wijij + GhUI + gu(xi, Ui)(ui - Ui) = 0, 

j=O 

respectively. Using the basis { ij} according to (4.3), we obtain the functions 

2 (X-Xi-,)(xi-x) if x E Qi, 
,Oio (x) = 

O otherwise 

from the definition (4.2). With (4.4), (4.6) and the boundary conditions this results 
in the iteration scheme 

u1+1 - u1+1 u1+1- 1+1 hi + hi+, i+1 
+ 2 gu (xi, u~) u'+1 hi hi+, 2 

k 

(4.7) = Z(wEi+1jV (xi + ) - w1+1 P)(x - 0)) 
j=O 

with+ 2 gu(Xi,ui)ui, i = 1(1)N-1, 

with 
u1+1 =Ut =o1 U0 -N 0 

and 
N k 

(4.8) Zw+ ij + Ghu5 = O. 
i=1 j=O 

By a straightforward modification of the well-known convergence proofs for New- 
ton's method (see [5]) we obtain 

THEOREM 4. 1. Let the function g(-, ) be Lipschitz continuously differentiable. 
There exist some E > 0 and some h> 0 such that for any h E (0, h] and arbitrary 
U? E Ue(Uh) the iterative method (4.7), (4.8) generates a unique sequence {ul5 
which converges to Uh. More precisely, there exist some constants Cl, C2 > 0 such 
that 

(4.9) jjU5+1 - Uh II < Clh112 IIUh - Uh || + C2 IIuh - Uh ||2X = 0(1) . 

Remarks. (i) The estimation (4.9) shows that the method (4.7), (4.8) generates 
a sequence {ul } converging for fixed stepsize h > 0 linearly to Uh provided ul5 
was close enough to Uh. However, the convergence is asymptotic superlinear in the 
following sense: 

lim MiH jhu5 -UhI O 
h-*+O 1-_00 jjU5h - UhII 
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(ii) The value e > 0 in Theorem 4.1 can be selected independently of the stepsize 
h. In particular, e does not have to tend to zero for h.--+ +0. 

(iii) The essential part of the method (4.7), (4.8) consists in the determination 
of GhU5 . Here, the shift p(I - Sk)Gul has been estimated via the remainder in 
Taylor's formula or via an approximate optimization, respectively, in the practical 
realization of the method. 

5. Numerical Examples. We now illustrate the efficiency of the proposed 
method by means of results obtained for some test problems. 

Example 1. 

-u" u3 - (97r2 +sin23wxx)sin37rx = 0 in Ql = (0,1), 

u(O) = u(l) = 0. 

Exact solution: u(x) = sin 3rx. Table 1 shows the maximum width at the grid 
points, 61 ,N := maXxiEZN{U k(Xi) -UN k(Xi)}, after 1 :(N, k) iterations, using 
an equidistant grid ZN := {xi := i/N, i = 0(1)N} with h:= 1/N and a method of 
order k+1 (k = 0,1, 2). The values in parentheses indicate the number of iterations. 

TABLE 1 

k = 0 k = 1 k = 2 

N = 5 5.967 685(13) 2.367 227(6) 0.599 570(6) 

N = 10 4.186 350(9) 0.701 473(6) 0.084 508(6) 

N = 20 2.493 946(7) 0.175 436(5) 0.009 893(4) 

N = 40 1.346 794(6) 0.043 601(4) 0.001 214(3) 

TABLE 2 

k=0 k=1 k=2 

N = 5 1.181 196(50) 0.779 038(45) no convergence 

N = 10 0.710 983(15) 0.149 880(8) 0.016 216(11) 

N = 20 0.323 309(8) 0.035 133(5) 0.002 203(5) 

N = 40 0.158 828(6) 0.008 845(4) 0.000 304(4) 

Example 2. As a second test problem we take 

-u" +a(sinhu-sgn(x-0.6)(x-0.8))=O inQ= (0,1), 

u(O) = u(1) = 0. 

For large values of the parameter a the solution possesses interior layers at x = 0.6 
and at x = 0.8. We choose a = 100. Table 2 again shows the maximum distance 
between the upper and lower solution at the grid points. 
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In Example 2 the function sgn(x - 0.6)(x - 0.8) exhibits a discontinuity at the 
points x = 0.6 and x = 0.8. Choosing the grid in such a way that these points 
are grid points, the proposed enclosing discretization technique is applicable in this 
case too. Indeed, the mappings p,p: C(Q) C U* -, Po (compare (2.6)) are to be 
modified as follows: 

[pu](x) sup u(() and [pu](x) inf u(() for x E Qi 

The iteration has been stopped if the condition 

1kNN,k - 6N,k < 10I 

is fulfilled. As initial point for k = 0 we selected in each case Ul = 0, and for 

k > 0, Uk :=U(Nk'1 ). The results in Tables 1 and 2 show that the number 
of iterations decreases with the refinement of the grid, according to the asymptot- 
ically superlinear convergence noted in Remark (i). The results also confirm the 
convergence results of Section 3 in a convincing way. For k = 0, the error reduces to 
1/2 of the preceding error when the number of grid intervals is doubled, for k = 1 
the reduction is by 1/4, for k = 2 by 1/8, in complete agreement with theoretical 
expectations. 
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